
LONGBOARD ARCHITECTURAL PRODUCTS

EXTRUDED ALUMINUM

Longboard® Architectural Products Inc. (Longboard) provides the design and construction community with inspiring architectural products for thoughtful spaces. Founded in 2005, Longboard manufactures top-quality extruded aluminum profiles that are offered in a variety of solid color and woodgrain powder-coated finishes for interior and exterior spaces.

Longboard's goal is to drive product innovation and excellence, provide radical client care and industry-best lead times, and advance sustainability in construction by creating products that reduce carbon emissions over their life cycle. Longboard is ICC ESR-4183 and ESR-4184 certified, manufactured in North America, and is headquartered in British Columbia, Canada.

For more information, visit: www.longboardproducts.com

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions

Products of Aluminum and Aluminum Alloys

EPD PROGRAM AND PROGRAM OPERATOR NAME, ADDRESS, LOGO, AND WEBSITE	UL Environmen 333 Pfingsten	t Road Northbrook, II 60611	https://www.ul.com https://spot.ul.com			
GENERAL PROGRAM INSTRUCTIONS & VERSION	General Progra	m Instructions v.2.5 March 2020				
MANUFACTURER NAME AND ADDRESS	nitectural Products Inc. ok Road, Unit 120 V2T 5X5					
DECLARATION NUMBER	4790062561.					
DECLARED PRODUCT & FUNCTIONAL UNIT OR DECLARED UNIT	inum, painted and decorated, 1000 kg	Į.				
REFERENCE PCR AND VERSION NUMBER (PART A AND B)		A for Life Cycle Assessment Calculation v3.2, ULE PCR Part B for Aluminum Co				
DESCRIPTION OF PRODUCT'S INTENDED APPLICATION AND USE (AS IDENTIFIED WHEN DETERMINING PRODUCT RSL, IF APPLICABLE)	N/A					
PRODUCT RSL DESCRIPTION (IF APPL.)	Extruded Alumi	inum, painted, and decorated				
Markets of Applicability	North America					
DATE OF ISSUE	April 1, 2022					
PERIOD OF VALIDITY						
EPD Type	iic .					
DATASET VARIABILITY	age only; mean, range of recycled content]					
EPD Scope	with options modules C1-C4, module D included					
YEAR(S) OF REPORTED PRIMARY DATA	2021					
LCA SOFTWARE & VERSION NUMBER	GaBi v10					
LCI DATABASE(S) & VERSION NUMBER	GaBi 2021 (CU	JP 2021.1)				
LCIA METHODOLOGY & VERSION NUMBER	IPCC AR5 (GWF	P), TRACI 2.1				
The sub-category PCR review was conducted by:		UL Environment				
		PCR Review Panel				
		epd@ul.com				
This declaration was independently verified in accordance with ISO 14025: 2006. The "Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Proje as the core PCR INTERNAL EXECUTE: INTERNAL		CooperMcC				
		Cooper McCollum, UL Environment				
The EPD conforms with (select one):		■ ISO 21930:2017				
This life cycle assessment was conducted in accordance with ISO 14044 and the refer This life cycle assessment was independently verified in accordance with ISO 14044 a PCR by:						
This life cycle assessment was independently verified in accordance with ISO 14044 at PCR by:	Sphera Solutions Inc James Mellentine, Thrive ESG	Jane A. Nuller				
LIMITATIONS		James Mellenune, Illine ESG	7			

LIMITATIONS

The environmental impact results of aluminum construction products in this document are based on a declared unit and therefore do not provide sufficient information to establish comparisons. The results shall not be used for comparisons without knowledge of how the physical properties of the aluminum product impact the precise function at the construction level. The environmental impact results shall be converted to a functional unit basis before any comparison is attempted. See Section 3.7 and 5.1 for additional EPD comparability guidelines.

Environmental declarations from different programs (ISO 14025) may not be comparable.

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions
Products of Aluminum and Aluminum Alloys

Product Definition and Information

Description of Organization

Longboard Architectural Products Inc. (Longboard) is a manufacturer, primarily focused on interior and exterior architectural products for commercial and high-end residential buildings. With their technical expertise, Longboard is well positioned to enable and assist architects, designers, general contractors and installers to design and build buildings that are energy efficient and that will reduce carbon emissions, minimize waste and at the same time enhance occupant comfort levels, wellness and health.

Product Description

Longboard products are used in a variety of building and construction applications, including: Open & Closed Joint Cladding, Screens, Panels & Metal Ceilings. Longboard's responsibility is to manufacture their product to the highest standards. Noncombustible, maintenance-free, doesn't warp, chip, will look fantastic in the built environment for 20+ years to come.

Table 1 Product description

Name	Value
Product Name	Longboard Architechtural Products
Product Description	Aluminum extrusions: Powdercoated and decorated
Classification	Semi-fabricated, construction product
Classification	Raw materials:Aluminum billet
(Semi-Fabricated Products Only)	Output: Aluminum Extrusions
Finishing	Powdercoating and decorating via sublimation technology
Alloy Group	6XXX series wrought aluminum (6063)

Product Average

This EPD covers the production of extruded aluminum with decorated surface finish after powder coating. The results for the final product are calculated for the Longboard Architectural Products production site located in Abbotsford, BC, Canada.

Properties of Declared Product as Delivered

Technical data for the studied product can be found in the table below.

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions

Products of Aluminum and Aluminum Alloys

Table 2 Technical data of the product

Name	Value	Unit		
Density	2700	kg/m3		
Melting point	616-654	°C		
Electrical conductivity at 20°C	31.25	m/Ωmm²		
Thermal conductivity	209	W/(mK)		
Coefficient of thermal expansion at <u>Define °C</u>	24	10 ⁻⁶ K ⁻¹		
Modulus of elasticity	68.9 x 10 ³	N/mm²		
Shear modulus	25.8 x 10 ³	N/mm²		
Specific heat capacity	0.90	kJ/kgK		
Hardness	60	НВ		
Yield strength	145	N/mm ²		
Ultimate tensile strength	186	N/mm²		
Breaking elongation	12	%		

Table 3 6063 aluminum alloy chemical composition (% by mass) as per Teal Sheet (AA, 2018)

	Si	Cu	Mn	Mg	Cr	Zn	Ti	Others (each)	Others (total)	Aluminum
Minimum	-	-	-	0.45	-	-	-	-	-	remainder
Maximum	0.35	0.10	0.10	0.90	0.10	0.10	0.10	0.05	0.15	remainder

Table 4 Primary and Recycled Material Composition

6063	Value (by mass)
Primary material	100%
Recycled material	0%

Base and Ancillary Material

Table 5 Base and ancillary material

Name	Value
Aluminum	96.75%
Paint and Decorating	3.25%

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions
Products of Aluminum and Aluminum Alloys

Industry Standards

- AAMA 509. AAMA 501.1-17.
- ASTM C423, ASTM E8, ASTM E84, ASTM E136, ASTM E283, ASTM E331, ASTM E1477, ASTM E2768,
- CAN/ULC S102, CAN/ULC S114,
- ICC ESR, ISO 22196, LARR,
- TAS 201, TAS 202, TAS 203, EN 13501,
- EN ISO 1716, EN 13823,
- UL 723, WUI

Manufacturing

The Longboard aluminum extrusions covered by this EPD are produced in the Abbottsford plant in British Columbia, Canada.

The manufacturing process comprises the following production stages:

Extrusion:

- The aluminum extrusion process begins by loading the aluminum billet into the log furnace and pre heated to become malleable, then moved into the extrusion press container, where the hydraulic ram applies pressure to the billet to fill in the container. The pressure in the container forces the aluminum alloy through the die's opening in the shape of a fully formed profile. After emerging from the die, the long length of aluminum profile is unloaded onto extraction belts to cool down, then mechanically gripped on both ends and pulled to stretch to make the part straight.
- The aluminum profile is then moved and unloaded to discharge belts to the Finish Saw and cut according to the required lengths. Final visual inspection and flatness check is conducted to ensure compliance to quality requirements.
- The cut to length profiles are discharged to the stacker then moved to the oven and aged per required recipe to bring them to the required hardness. Aged aluminum profile is unloaded into the basket for and packed into bundles labeled with ticket for traceability

Surface Treatment and Powder Coating:

- Pre-treatment: Aluminum profiles bundles are moved to powder coating line where the profiles are manually hung
 to undergo six stages of pretreatment process. This process used chemicals for degreasing, etching, rinse and
 chrome free application in order to remove grease, oil, dirt and other materials on the aluminum profile surface and
 prepare for proper powder-coating adhesion.
- Powder coating: After completing the pretreatment process, the aluminum profile moved through the powder coating process. A spray gun applies an electrostatic charge to the paint powder particles and applies uniformly across the aluminum profile surface. After coating application of the paint powder, the aluminum profile moves to the curing oven where with the addition of heat, the coating chemically reacts to seal the powder coat.

Decorating:

Decorating process is a sublimation process when a woodgrain finish is required. In this process the powder

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions
Products of Aluminum and Aluminum Alloys

coated aluminum profiles are bagged with a woodgrain pattern film. The bagged profiles will move through the oven. The heat from the oven will activate the inks on the film to a gas state which then embedded into the powder coating for the desired woodgrain finish.

The manufacturing process is illustrated in the diagram below.

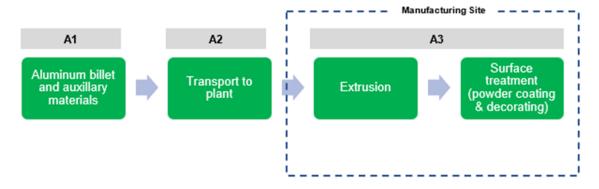


Figure 1 Breakdown of life cycle stages for aluminum extrusion

Product Processing/Installation

Installation is outside of the scope of this EPD.

Packaging

Wood, plastic and cardboard packaging are used in this study.

Recycling and Disposal

Aluminum extrusions are a highly efficient, sustainable building material. Aluminum is 100% recyclable and can be recycled repeatedly. Recycled aluminum can be identical to smelted aluminum but requires a fraction of energy to manufacture. In building and construction, aluminum scrap has a recycling rate of 95% (UNEP, 2011) (AEC, 2021). The remaining 5% is sent to landfill.

Table 6 Recycling and disposal

Name	Unit
Deconstruction	
Transportation to the disposal site	100 km by truck

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions

Products of Aluminum and Aluminum Alloys

Waste processing	
Disposal to landfill	5%
Recycling rate of the product	95%
Removals of biogenic carbon	N/A

Environment and Health

Product manufacturing: Plant emissions to air/soil/water are monitored (if applicable) and comply with local laws.

Product use: Longboard products are not expected to create exposure conditions that exceed safe thresholds for health impacts to humans or flora/fauna under normal operating conditions.

Methodological Framework

Declared Unit

The declared unit is 1,000 kg of aluminum extrusion as produced at the factory.

Table 7 Declared unit

Name	Value	Unit
Declared unit	1	metric ton
Density (typical)	2700	kg/m³

System Boundary

Per the PCR, this cradle-to-gate with options analysis provides information on the Product Stage of the aluminum product life cycle, including modules A1–A3, C1-C4 and D:

- A1 The provision of resources, additives and energy
- A2 Transport of resources and additives to the production site
- A3 Production process on site, including energy, production of additives, disposal of production residues, consideration of related emissions and recycling of production scrap ("closed loop")
- C1 Deconstruction
- C2 Transport to the disposal site

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions Products of Aluminum and Aluminum Alloys

- C3 Waste processing
- C4 Disposal at the end of the life cycle, i.e., during building deconstruction
- D Net benefits resulting from reuse, recycling and energy recovery that take place beyond the system boundary.

Interpreting the Results in Module D

The values in Module D include a recognition of the benefits or impacts related to aluminum recycling which occur at the end of the product's service life. The results included in Module D attempt to capture future benefits, or impacts, but are based on a methodology that uses current industry-average data reflecting current processes.

A net scrap approach was taken to capture the benefits related to aluminum recycling reported in module D. The following datasets in Table 8 were used to calculate the associated aluminum credit:

Table 8 Background datasets used for module D

<u> </u>			
Background datasets (Sphera, 2021)	Reference year		
RNA: Secondary aluminum ingot (95% recycled content) AA	2016		
RNA: Primary aluminum ingot AA	2016		

The net scrap approach is based on the perspective that material that is recycled into secondary material at end of life will replace for an equivalent amount of virgin material. Hence a credit is given to account for this material substitution. However, this also means that burdens equivalent to this credit should be assigned to scrap used as an input to the production process, with the overall result that the impact of recycled granulate is the same as the impact of virgin material. This approach rewards end of life recycling but does not reward the use of recycled content. A schematic is presented to further explain the net scrap approach that is considered in Aluminum end-of-life recycling. A schematic of the Module D calculation is presented in Figure 2.

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions
Products of Aluminum and Aluminum Alloys

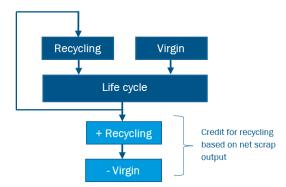


Figure 2 Schematic for the net-scrap approach (credit given at the end-of-life)

Table 9 below represents the system boundary and scope.

Table 9 System boundary modules included and excluded from the study

	DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)															
PROD	DUCT S	STAGE	PRO	RUCTION CESS AGE		USE STAGE END OF LIFE STAGE						BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES				
Raw material supply	Transport	Manufacturing	Transport	Construction- installation process	Waste processing Transport Deconstruction Administran Operational water use Operational energy use Refurbishment 1 Replacement Repair Maintenance Use					Reuse- Recovery- Recycling- potential						
A1	A2	A3	A4	A 5	B1	B2	вз	В4	B5	В6	В7	C1	C2	СЗ	C4	D
X	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	Х	Х	х	Х	X

^{*} X = module included, MND = module not declared

It should be noted here that, C1 and C3 are to be reported as zero as they are assumed to fall below the cut-off criteria defined by ISO 21930. C2 is assumed as 100 km by truck. Materials for recycling (95%) for aluminum is reported in C1 module.

<u>Time coverage:</u> Longboard Architectural Products primary data represent production within calendar year 2021. Background data for upstream and downstream processes (i.e., raw materials, energy resources, transportation, and ancillary materials)

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions
Products of Aluminum and Aluminum Alloys

were obtained from the GaBi 10 (CUP 2021.1) databases.

<u>Technology coverage:</u> Data were collected for the production of painted (powder-coated), decorated and mill-finish aluminum extrusions at Longboard's facility in British Columbia, Canada.

<u>Geographical coverage:</u> Longboard manufactures aluminum extrusion products at Abbottsford, British Columbia, Canada. As such, the geographical coverage for this study is based on North American system boundaries for all processes and products. Whenever Canadian or U.S. background data were not readily available, European data or global data were used as proxies.

Allocation

No multi-output (i.e., co-product) allocation was performed in the foreground system of this study.

Allocation of background data (energy and materials) taken from the GaBi 2021 databases is documented online at https://sphera.com/wp-content/uploads/2020/04/Modeling-Principles-GaBi-Databases-2021.pdf. Also please refer to the 2022 LCA report on semi-fabricated aluminum. for more information: https://www.aluminum.org/sites/default/files/2022-01/2022 Semi-Fab LCA Report.pdf

Per the PCR guidance, recycling and recycled content in the cradle-to-gate system are modeled using the cut-off rule (a.k.a, the recycled content rule). All materials that are recycled from unit processes are considered to have left the system boundary. Recycled content is modeled in the system only when the percent of recycled content was specified in the material purchase.

Cut-off Criteria

In the case of data gaps for unit processes, the cut-off criteria as defined by ISO 21930 were applied. All available energy and material flow data have been included in the model. In cases where no matching life cycle inventories are available to represent a flow, proxy data have been applied based on conservative assumptions regarding environmental impacts.

Data Sources

The LCA model was created using the GaBi 10 software system for life cycle engineering, developed by Sphera (Sphera, 2021). Background life cycle inventory data for raw materials and processes were obtained from the GaBi 2021 database (CUP 2021.1). Primary manufacturing data were provided by Longboard Architectural Products.

Longboard imports primary Aluminum billet from Australia, Washington (USA) and Quebec (Canada). Industry average Aluminum Association (AA) dataset for primary Aluminum ingot is used to represent all primary Aluminum in this study. Table 10 represents the carbon intensity and share of electricity for AA dataset.

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions

Products of Aluminum and Aluminum Alloys

Table 10 Data sources, origin and carbon intensity for primary Aluminum

Dataset used in the calculation	Geographic origin	Carbon intensity per 1 kg (kgCO₂eq/kwh)	Power mix for Smelting for North American Primary Aluminum	Share of power in the mix	kwh / kg with share		
Primary Aluminum	North	0.015	Hydro	79.99%	9.60E+00		
ingot (AA)	America	1.100	Coal	16.91%	4.43E-01		
				0.981	Oil	0.01%	4.16E-08
		0.546	Natural Gas	2.69%	1.13E-02		
		0.005	Nuclear	0.40%	2.51E-04		

Data Quality

A variety of tests and checks were performed by the LCA practitioner throughout the project to ensure high quality of the completed LCA. Checks included an extensive internal review of the project specific LCA models developed as well as the background data used. A full data quality assessment is documented in the background report.

Period Under Review

Primary data were collected for sublimed (decorated) longboard production during the year 2021. Background data for steel coil production was taken from AA and represents steel production during 2016. This analysis is intended to represent production in 2020.

Estimations and Assumptions

All of the raw materials and energy inputs have been modeled using processes and flows that closely follow actual production data on raw materials and processes. All reported material and energy flows have been accounted for.

No significant assumptions have been made beyond the aforementioned.

Proxy data were applied to some materials where no matching life cycle inventories were available, as documented in the background report.

Life Cycle Assessment - Results

The results from the Longboard Aluminum extrusions are given below. While interpreting the Module D results one should consider that, the values in Module D include a recognition of the benefits or impacts related to aluminum recycling which

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions
Products of Aluminum and Aluminum Alloys

occur at the end of the product's service life. The rate of aluminum recycling and related processes will evolve over time. The results included in Module D attempt to capture future benefits, or impacts, but are based on a methodology that uses current industry-average data reflecting current processes.

Longboard Aluminum Extrusions

GWP excludes biogenic carbon as there are no relevant biogenic carbon removals or emissions in the life cycle. There is no calcination, carbonation and combustion of waste from non-renewable sources.

Table 11 LCIA results for 1,000 kg of longboard aluminum extrusions (100% primary aluminum)

Impact Category	Unit	A1	A2	АЗ	C1	C2	C4	D
-		LIFE CYC	LE IMPACTS AS	SESSMENT (LC	IA) RESULTS			
GWP	kg CO ₂ eq	1.01E+04	2.02E+02	8.80E+02	-	1.65E+01	3.57E+00	-9.56E+03
ODP	kg CFC 11 eq.	5.04E-12	3.81E-14	3.36E-06	-	3.44E-15	1.22E-14	-3.21E-12
AP	kg SO ₂ eq.	4.68E+01	2.29E+00	2.12E+00	-	3.18E-02	1.57E-02	-4.48E+01
EP	kg N eq.	1.04E+00	1.59E-01	2.42E-01	-	4.56E-03	2.03E-02	-9.92E-01
SFP	kg O₃ eq.	3.83E+02	7.58E+01	3.84E+01	-	7.20E-01	1.95E-01	-3.68E+02
ADPf	MJ LHV surplus energy	8.18E+03	3.68E+02	2.03E+03	-	3.23E+01	5.02E+00	-6.35E+03
			RESOURCE I	JSE INDICATOR	S			
RPRe	MJ LHV	6.12E+04	9.26E+01	1.88E+03	-	1.00E+01	4.47E+00	-6.21E+04
RPRm	MJ LHV	-	-	1.13E+03	-	-	-	-
NRPRe	MJ LHV	9.82E+04	2.78E+03	1.39E+04	-	2.44E+02	4.37E+01	-8.75E+04
NRPRm	MJ LHV	2.09E+03	-	3.09E+02	-	-	-	-
SM	MJ LHV	-	-	-	-	-	-	4.11E-01
RSF	MJ LHV	-	-	4.67E-05	-	-	-	-
NRSF	MJ LHV	-	-	4.86E-04	-	-	-	-
RE	kg	-	-	-	-	-	-	-
FW	m³	2.03E+02	3.88E-01	1.19E+01	-	4.29E-02	-1.72E+00	-2.06E+02
		<u> </u>	OUTPUT FLOWS	S & WASTE FLO	ows			
HWD	kg	5.67E-05	2.14E-07	6.24E-03	-	2.04E-08	4.14E-09	-5.31E-05
NHWD	kg	3.69E+03	2.24E-01	3.73E+01	-	2.24E-02	1.01E+02	-3.76E+03
HLRW	kg	9.67E-04	9.18E-06	3.67E-05	-	8.21E-07	1.12E-06	-7.48E-04
ILLRW	kg	7.90E-01	7.72E-03	3.43E-02	-	6.92E-04	9.44E-04	-5.99E-01
CRU	kg	-	-	-	-	-	-	-
MFR	kg	-	-	-	9.50E+02	-	-	4.98E-01
MER	kg	-	-	-	-	-	-	-
EE	kg	-	-	-	-	-	-	-

results shall be converted to a functional unit basis before any comparison is attempted.

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions Products of Aluminum and Aluminum Alloys

Comparability: Comparisons cannot be made between product-specific or industry average EPDs at the design stage of a project, before a building has been specified. Comparisons may be made between product-specific or industry average EPDs at the time of product purchase when product performance and specifications have been established and serve as a functional unit for comparison. Environmental impact

Any comparison of EPDs shall be subject to the requirements of ISO 21930. EPDs are not comparative assertions and are either not comparable or have limited comparability when they have different system boundaries, are based on different product category rules or are missing relevant environmental impacts. Such comparison can be inaccurate and could lead to erroneous selection of materials or products which are higher-impact, at least in some impact categories.

Interpretation

The results represent the cradle-to-gate and end-of-life environmental performance of the surface treated aluminum extrusions. As shown in Figure-1, the results indicate that the impacts are dominated by the manufacturing stages (A1-A3). The largest contributions come from upstream aluminum production (A1); the extrusion and finishing processes account for a relatively small part of the manufacturing impact in comparison.

The credits at the end-of-life (Module D) also play a role in the life cycle; if a higher rate is used, the credit will increase, thus lowering the total life-cycle impacts.

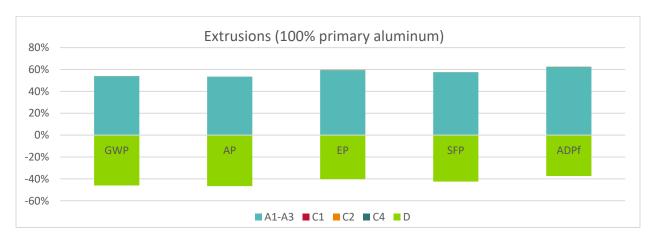


Figure 3 Results for Longboard Aluminum Extrusions by life cycle stages (IPCC AR5 & TRACI 2.1)

 $(GWP = Global\ warming\ potential\ (IPCC);\ AP = Acidification\ potential;\ EP = Eutrophication\ potential;\ ODP = Stratospheric\ ozone\ layer\ depletion\ potential;\ FF = Resources,\ Fossil\ fuels;\ SFP = Smog\ formation\ potential)$

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions
Products of Aluminum and Aluminum Alloys

References

AA. (2013). The Environmental Footprint of Semi-finished Aluminum Products in North America: A Life Cycle Assessment Report. Aluminum Association.

AA. (2018). International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys. Arlington, Virginia, United States.

AAC. (2021). Retrieved from Aluminum Anodizers Council (AAC): https://www.anodizing.org/page/what-is-anodizing

AEC. (2021). Retrieved from Aluminum Extruders Council (AEC): https://www.aec.org/page/aluminum-extrusion-process-basics

Bare, J. (2012). Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) - Software Name and Version Number: TRACI version 2.1 - User's Manual. Washington, D.C.: U.S. EPA.

EAA. (2021). https://www.european-aluminium.eu/. Retrieved from European Aluminum Website.

EPA. (2021). Retrieved from https://www.epa.gov/environmental-topics/chemicals-and-toxics-topics

IAP-USA. (2021). Retrieved from Industrial painting USA: https://industrialpaintingusa.com/project/painting-aluminum-mills/

IBU. (2014). PCR Guidance-Texts for Building-Related Products and Services: Part B: Requirements on the EPD for Products of aluminium and aluminium alloys. Berlin.

IBU. (2014). Product Category Rules for Building-Related Products and Services: Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project report. Königswinter.

IBU. (2019). Part B: Requirements on the EPD for Requirements on the EPD for Windows and doors (IBU V1.2, 10.26.2019).

IBU. (2019). Part B: Requirements on the EPD for Self supporting façade elements based on glazed curtain walls (IBU, V1.7, 04.01.2019).

IBU/UL. (2014). PCR Guidance-Texts for Building-Related Products and Services: Part B: Requirements on the EPD for Products of aluminium and aluminium alloys. Berlin. IBU/UL.

IBU/UL. (2018). Part A: Calculation Rules for the LCA and Requirements Project Report.

ISO. (2006). 14024:2006, Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO. (2006). 14040:2006, Environmental Management - Life Cycle Assessment - Principles and Framework.

ISO. (2006). 14044:2006 Environmental Management - Life Cycle Assessment - Requirements and Guidelines.

Mayne. (2021). Retrieved from https://www.Mayne.com/Mayne/north_america/catalog/97911/ADMD070EN.pdf

Sphera. (2020). GaBi energy database, retrieved from Sphera Solutions Inc, http://www.gabi-software.com/support/gabi/gabi-database-2019-lci-documentation/extension-database-ii-energy/.

Sphera. (2021). GaBi LCA Database Documentation. Retrieved from Sphera Solutions, Inc.: http://www.gabi-software.com/america/support/gabi

According to ISO 14025, and ISO 21930:2017

Painted and decorated Aluminum Extrusions
Products of Aluminum and Aluminum Alloys

UNEP. (2011). Recycling Rates of Metals : A Status Report. Retrieved from UNE Document Repository: https://wedocs.unep.org/bitstream/handle/20.500.11822/8702/Recycling_Metals.pdf?sequence=1&isAllowed=y

 $Worldsteel. \qquad (2017). \qquad Retrieved \qquad from \qquad https://www.worldsteel.org/en/dam/jcr:6eefabf4-f562-4868-b919-f232280fd8b9/LCl%2520methodology%2520report_2017.pdf$

Contact Information

Study Commissioner

Longboard Architectural Products Inc. 1777 Clearbrook Road, Unit 120 Abbotsford, BC V2T 5X5 www.longboardproducts.com

LCA Practitioner

Sphera Solutions, Inc. 130 E Randolph St, #2900 Chicago, IL 60601 https://sphera.com/contact-us/ www.sphera.com

